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EXECUTIVE SUMMARY 

Automated detection and geolocation of roadside objects are critical for effective roadway safety analysis 

and transportation planning, particularly in rural areas. The goal of this project was to detect and 

geolocate roadside objects using a videolog comprising over 43 million images of North Carolina’s rural 

roads. This study describes an approach for detecting and geolocating stationary roadside objects by 

fusing airborne LiDAR data with videolog images. While multi-modal sensor fusion has been widely 

studied and applied in autonomous navigation for enhanced spatial perception, to the best of our 

knowledge, existing methods all assume known sensor parameters and dense spatiotemporal resolution to 

facilitate spatiotemporal data alignment. However, in practice, datasets may have incomplete sensor 

metadata and sparse spatiotemporal resolution.  We aim to enable automated detection and geolocation of 

roadside objects using videolog data comprising over 43 million images of North Carolina's rural roads. 

The videolog lacks camera intrinsic and pose parameters, and due to temporal downsampling of the initial 

video capture, consecutive images are spaced 26 feet apart, and GPS coordinates must be approximated. 

To address these limitations, the project team integrated airborne LiDAR data with videolog images 

through a novel data registration and alignment approach that estimated missing camera parameters 

through minimization of alignment errors between videolog road lane markings and projected LiDAR 

Road edges, enabling more accurate computation of object bearings in our geolocation pipeline. The 

project team was able to apply this approach to detect utility poles in the roadside. This work contributes 

a practical and scalable solution to the often-overlooked challenge of sensor fusion with incomplete 

camera metadata. 
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Chapter 1. Introduction 

1.1 Background 

Crashes involving a roadway or lane departure are associated with a significant number of 

fatalities each year in the United States. These crashes include head-on collisions with vehicles 

from the opposing lane, collisions with roadside objects, and rollover crashes. The Federal 

Highway Administration estimates that more than 50 percent of traffic fatalities in the United 

States involve a roadway departure.1 In North Carolina, more than three-fourths of serious injury 

and fatal lane departure crashes occur in rural areas, and more than 60% of these involve a fixed 

object.2 To reduce the severity and frequency of these crashes, transportation agencies require 

timely and accurate information on roadside objects across extensive rural roadway networks. 

However, manual inspection and data collection in these environments are labor-intensive, time-

consuming, and can pose safety risks to field personnel. Consequently, there is a growing need 

for automated methods to detect and geolocate roadside objects, i.e., assign geographic 

coordinates (latitude and longitude) to each object, to enable scalable, data-driven roadway safety 

analysis and transportation planning, especially in rural areas. Many state agencies have acquired 

videologs covering portions of their roadway networks. Leveraging these videologs through 

automation offers the potential to significantly enhance the efficiency and effectiveness of road 

safety assessments and transportation planning. 

In 2018 and 2019, NCDOT collected videolog data for all secondary roads (over 54 thousand 

miles) in NC, 76% of which are classified as rural roads. The resulting data consists of images 

sampled every 26 feet using three front-facing cameras; an example image set is shown in Fig. 1. 

The dataset lacks essential camera intrinsic parameters (e.g., field of view) and extrinsic pose 

information, such as accurate GPS locations, which presents major challenges for conventional 

image-based object geolocation techniques. 

In prior work [32], this project team established the feasibility of using AI to identify guardrails 

and utility poles in NCDOT’s videolog data. We trained convolutional neural network (CNN) 

models capable of detecting these roadside objects with high accuracy—90% for guardrails and 

88% for utility poles. To facilitate this process, we developed a web-based annotation tool that 

enabled efficient user labeling of training data through an iterative active learning process to 

support model development and evaluation as summarized in Fig. 1. 

 

 

 

1 https://highways.dot.gov/safety/RwD 
2 https://connect.ncdot.gov/groups/echs/Documents/2024/2024%20NC%20SHSP.pdf 

https://highways.dot.gov/safety/RwD
https://connect.ncdot.gov/groups/echs/Documents/2024/2024%20NC%20SHSP.pdf
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Fig. 1 Prior work summary plot. (a) A graphical tool enables users to label images as having a particular roadside object such as a guardrail (left). 

(b) These labels are used to train a convolutional neural network, which predicts whether unlabeled images contain the object of interest (middle). 

(c) These predictions are validated against human responses, showing good prediction accuracy (right). 

Despite the success of the initial feasibility study, this work had two primary limitations. First, 

while the models could detect the presence of a roadside object in an image, they could not 

geolocate it. For instance, the models could not distinguish between a pole close to the roadway, 

which may pose a hazard during lane departures, and a pole that is farther away but still visible 

in the image. Second, the models lacked the ability to extract terrain or topographic features, 

such as side slope, which are important in assessing roadside risk.  

1.2 Research Objective and Scope 

To address these limitations and better meet NCDOT’s needs, the objective of this project was to 

extend our earlier work by fusing videolog images with airborne LiDAR data to estimate the 

spatial location of detected roadside objects and extract detailed geometric and topographic 

information. Our data fusion approach enables each detected object to be assigned a geographic 

location based on spatial cues in the LiDAR data. In addition, LiDAR data fusion provides rich 

geometric context, making it feasible to extract road geometry, fixed object density, clear zones, 

and side slope characteristics at each identified object location for comprehensive roadside safety 

analysis. 

1.3 Research Approach and Contribution 

We build our geolocation pipeline based on the pipeline developed by Krylov et al. [12], which 

automatically detects and computes the GPS coordinates of recurring stationary objects of 

interest using street view imagery. Their processing pipeline uses a CNN model to detect objects 

in images, applies monocular depth estimation to estimate the distance of detected objects from 

the camera, and uses a custom Markov Random Field (MRF) model to perform triangulation for 

automatic mapping and geolocation of objects in complex scenes. This approach is effective for 

street view imagery with known camera position and orientation (i.e., bearing towards north) for 

each image; however, this information is not provided in our videolog data. To overcome this 

limitation, we have introduced a novel LiDAR-based registration and alignment module to 

estimate missing camera parameters by minimizing alignment errors between videolog-derived 

road lane markings and projected LiDAR road edges, enabling more accurate object bearing 

computation for geolocation using their pipeline. 

While multi-modal sensor fusion has been widely studied and applied in domains such as 

autonomous navigation for enhanced spatial perception, to the best of our knowledge, existing 

methods all assume known sensor parameters and dense spatiotemporal resolution to facilitate 

accurate spatiotemporal data alignment. However, in practice, datasets—such as the videolog 
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from NCDOT—may contain incomplete sensor metadata and sparse spatiotemporal resolution. 

By using utility poles as a case study, we demonstrate that our extended pipeline can effectively 

detect and geolocate roadside objects under real-world constraints. Our work thus offers a 

practical and scalable solution to the often-overlooked challenge of sensor fusion with 

incomplete camera metadata and limited spatiotemporal resolution. 

The specific contributions of our work include: 

• A scalable, data fusion-based geolocation pipeline for roadside objects that addresses the often-

overlooked challenge of sensor fusion with incomplete camera metadata. 

• An extension of Krylov et al. [12]’s object geolocation pipeline by incorporating additional 

sensor fusion-related components. For those components introduced in Krylov et al.’s pipeline—

such as image segmentation, monocular depth prediction, and MRF-based geotagging—we used 

alternative models or extended their methods to better suit our application, offering new insights 

into geolocation challenges. 

• A novel data registration and alignment method that integrates airborne LiDAR and videolog 

imagery. This method estimates missing camera parameters by minimizing alignment errors 

between videolog road lane markings and projected LiDAR road edges, enabling more accurate 

object bearing computation in the geolocation pipeline. 

1.4 Report Organization 

The remainder of the report is organized as follows. Chapter 2 is a summary of previous related 

research. Chapter 3 describes our data fusion-based geolocation pipeline and methodology. 

Chapter 4 presents our validation results and analysis. Finally, Chapter 5 provides the 

conclusions and future directions. 
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Chapter 2. Review of Relevant Prior Work 

In this section, we present related work on image- and LiDAR-based object detection, 

classification, and geolocation, along with sensor fusion approaches. 

2.1 Image-Based Object Detection, Classification, and Geolocation 

In recent years, machine learning techniques, particularly deep learning (DL) convolutional 

neural networks (CNNs), have shown exemplary performance in automated object detection and 

classification from images and videos [11]. However, object geolocation must handle additional 

complexity by recognizing objects appearing in multiple images and merging them into one 

single geolocation using re-identification-, tracker-, or triangulation-based methods [27]. 

In re-identification-based methods, a model performs object detections using multiple image 

frames and outputs a single prediction for an object from the multiple input frames. Re-

identification-based methods were proposed by Nassar et al. [18, 19], but their models require 

determining a fixed number of input image frames for detecting objects before training, which is 

impractical for real-world situations [27]. 

In tracker-based methods, objects between frames are associated and tracked in a model to 

compute a final prediction. For example, Chaabane et al. [3] constructed a CNN consisting of an 

object pose regression network and an object matching network, which used the camera’s 

intrinsic matrix along with six different image perspectives collected by six cameras. Wilson et 

al. [27] proposed a multi-class tracking-based deep learning approach for geo-localization of 

objects in multiple classes from images captured by a single camera, requiring images’ GPS 

coordinates and headings. These approaches are not applicable to our use case, as our videolog 

images lack critical camera metadata, including intrinsic parameters, accurate GPS coordinates, 

and heading information. 

Triangulation-based approaches use a classic triangulation method to compute an object’s 

geolocation using the depth to an object in an image and the image’s GPS coordinates and 

headings, followed by a final clustering algorithm to cluster repeated object occurrences into one 

single geolocation. The first triangulation-based approach for object geolocation from street view 

imagery was presented by Krylov et al. [12], who proposed a custom Markov Random Field 

(MRF) model to perform object triangulation for geolocation after segmenting objects in the 

images using a CNN-based semantic segmentation model and estimating object distance from the 

camera using a monocular depth estimation model. Their MRF model requires images’ GPS 

coordinates and headings (i.e., bearings towards north) to perform triangulation. Similarly, Zhang 

et al. [34] applied DL to identify utility poles with crossarms in Google Street View images and 

estimate their spatial positions with a line-of-bearing (LOB)-based triangulation method. We 

built our object geolocation pipeline upon Krylov et al.’s [12] triangulation-based object 

geolocation approach. 

2.2 LiDAR-Based Object Detection and Classification 

While street view images and videos are widely used for object detection and geolocation due to 

the rich visual details they provide, cameras are sensitive to varying lighting and weather 

conditions, and suffer from imprecise geolocation and limited depth information. To overcome 
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these limitations, DL-based LiDAR 3D point cloud pointwise classification and semantic 

segmentation (e.g., SqueezeSeg [28], CENet[4]) has drawn increasing attention for accurate, 

real-time, and robust environment perception and understanding, especially for autonomous 

driving. Sun et al. [23] presented a toolbox to support the exploration, comparison, and 

benchmarking of convolutional LiDAR segmentation models. Li et al. [14] gave a 

comprehensive survey of DL for LiDAR point clouds in autonomous driving, summarizing 

existing LiDAR point cloud datasets for model training, validation, and benchmarking, general 

3D DL frameworks, and remaining challenges. Alaba et al. [1] presented a survey on DL-based 

LiDAR 3D object detection and feature extraction techniques for autonomous driving, including 

a summary of the commonly used LiDAR 3D coordinate systems and encoding techniques. 

2.3 Sensor Fusion Approaches 

While DL models based on vision or LiDAR data have demonstrated strong performance in 

object classification and segmentation tasks, their effectiveness in precise object geolocation and 

3D spatial understanding remains limited when used in isolation. In contrast, multi-modal sensor 

fusion systems have shown substantial potential in enhancing spatial perception by leveraging 

the complementary strengths of different types of sensor modalities through appropriate fusion 

strategies [25]. By integrating information from both visual and LiDAR data sources, these 

systems can overcome the individual shortcomings of each modality, such as inaccurate 

monocular depth estimation from images or sparse object representations in LiDAR scans. 

However, the performance of multi-modal fusion approaches is often hindered by challenges 

such as spatiotemporal misalignment between sensors, domain discrepancies, and varying levels 

of noise across data sources. To fully realize the benefits of multi-modal perception, it is 

essential to develop more robust spatiotemporal registration techniques and advanced data fusion 

strategies that can effectively reconcile differences across sensor domains and enhance the 

overall perception performance [24]. 

While sensor fusion between LiDAR and other modalities, such as camera images, has become 

an important area of research, DL-based fusion methods still face notable challenges. These 

approaches must balance accuracy with algorithm complexity due to data redundancy, and there 

is still a huge gap between algorithm design and practical applications in the real world [29]. 

Wang et al. [26] conducted a comprehensive review of recent DL-based multi-modal 3D 

detection networks, particularly focusing on LiDAR-camera fusion. Their analysis centers on 

three key dimensions of fusion design: when to fuse (fusion stage), what to fuse (fusion inputs), 

and how to fuse (fusion granularity). These design decisions critically influence system 

performance and typically involve projecting LiDAR points into the image plane using 

homogeneous transformations to establish a 3D-2D correspondence between the two modalities 

[26]. 

A growing body of research has focused on developing novel data fusion architectures for 

effective alignment of LiDAR and image data. For example, Huang et al. [9] introduced EPNet, a 

learning-based fusion framework for 3D object detection that combines LiDAR point features 

with semantic image features through a LiDAR-guided Image Fusion (LI-Fusion) module. This 

module performs point-wise projection of LiDAR data onto the image plane to establish the 

correspondence between LiDAR and image data and adaptively weights the importance of the 

image semantic features, effectively enhancing relevant image features while suppressing noisy 
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or interfering image features. Similarly, Li et al. [15] explored fusion strategies for improving 

multimodal 3D object detection by addressing feature alignment challenges. They proposed two 

techniques, InverseAug, which projects 3D key points—derived after the data augmentation of 

the original LiDAR point cloud during training—to 2D camera features using the LiDAR and 

camera parameters, and LearnableAlign, which leverages cross-attention to dynamically learn the 

correlation between a LiDAR feature and its corresponding camera features. 

Alignment of multi-sensor data in fusion-based approaches typically relies on known LiDAR and 

camera parameters to project a 3D LiDAR point cloud onto the 2D image plane. Similarly, 

vision-based object geolocation methods using street view imagery often require not only image 

GPS coordinates, but also camera intrinsic and pose parameters, such as headings or bearing 

information, to estimate object geolocations effectively. However, in real-world settings, datasets 

may contain incomplete sensor metadata. For example, the videolog imagery collected by 

NCDOT includes approximate GPS coordinates with consecutive images spaced 26 feet apart but 

lacks critical camera intrinsic and pose parameters. In addition, camera parameters of the 

Mapillary Vistas dataset [20], composed of data pulled from heterogeneous sources, are not 

readily accessible. To address this limitation, we developed a novel data registration and 

alignment approach that fuses airborne LiDAR data with videolog images. Our approach 

estimates the missing camera parameters by minimizing alignment errors between visible road 

lane markings in the videolog imagery and the projected road edges derived from LiDAR, 

thereby enabling accurate computation of object bearings in our geolocation pipeline. We 

describe our geolocation pipeline and methodology in the following section using utility pole 

detection and geolocation as a case study. 

  



 

13 

Chapter 3. Methodology 

To enable accurate geolocation of roadside utility poles using videolog images with incomplete 

camera metadata, we have adapted and extended the geolocation pipeline introduced by Krylov 

et al. [12]. While their approach leverages street view imagery with known camera positions and 

orientations (i.e., bearing towards north), our work addresses the practical challenges of working 

with videolog imagery that lacks both intrinsic and extrinsic camera parameters. Specifically, we 

introduce a novel LiDAR-based registration and optimization module that estimates camera 

orientation by aligning road lane markings detected in videolog images with projected road edge 

boundaries extracted from airborne LiDAR data. This alignment facilitates more accurate object 

bearing estimation, which is critical for the MRF-based triangulation and geolocation approach 

used by Krylov et al. 

Fig. 2 illustrates the overall structure of our geolocation pipeline, including the major 

components and data flows. The two key components—camera parameter estimation via road 

alignment and mapping input computation—are highlighted in yellow. These components 

transform raw data inputs (i.e., videolog images and airborne LiDAR data) into the spatial and 

geometric inputs required for the final MRF-based geolocation. 

 

Fig. 2 Pipeline components for roadside object geolocation. 

In the following sections, we describe each component of the pipeline using utility poles 

detection and geolocation as a case study. Our geolocation pipeline is designed to be 

generalizable, enabling geolocation of not only utility poles but also other roadside safety objects 

of interest, such as trees, buildings, and guardrails. 
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3.1 Image Segmentation 

Krylov et al. [12] employed a semantic segmentation model based on the Fully Convolutional 

Neural Network (FCNN) architecture [22] to detect objects of interest. The model outputs pixel-

level labels that can be directly used as masks in the depth estimation step of their geolocation 

pipeline. However, the segmentation model used in their implementation is not publicly 

available. 

To select an effective semantic segmentation model for our geolocation pipeline, we qualitatively 

evaluated two publicly available deep learning-based image segmentation frameworks on a 

mountainous route in our videolog: MIT SemSeg [35, 36] and OneFormer[10]. Models in the 

SemSeg library were trained on the ADE20k scene parsing dataset, while the subset of 

OneFormer models evaluated were trained on either the Cityscapes [5] or Mapillary Vistas [20] 

dataset. 

For each framework, multiple top-performing model architectures were tested on raw videolog 

images, as well as a series of increasingly downsampled versions to determine a minimum 

resolution for acceptable performance. Broadly, the OneFormer models outperformed similarly-

sized SemSeg models for detecting utility poles, with larger models generally providing the best 

segmentation results. The largest OneFormer model, ConvNeXt-XL, is available pretrained on 

Cityscapes or Mapillary Vistas data. On our images, the Mapillary Vistas version performed 

marginally better, and we therefore selected that model moving forward. We observed a marked 

decrease in utility pole detection when images were scaled below 640 X 512 pixels (width X 

height), so that resolution was chosen as a balance between speed and accuracy. 

One drawback of the larger segmentation models is that they often misidentify extraneous pole-

like objects (e.g., fence and sign posts) as utility poles, resulting in a high number of false 

positives (FPs), as shown in Figure 3. To reduce FPs in pole segmentation, we developed a rule-

based post-processing method. This method begins by removing wire extensions from segmented 

poles using morphological operations, specifically, erosion followed by dilation. It then filters 

out FPs using empirically derived rules based on object height-to-width aspect ratio and the 

relationships between object height and estimated object depth. While we can remove much of 

this pole-like noise through post-processing, there remain FPs that closely resemble true utility 

poles and are difficult to distinguish based on visual appearance alone. Further improvements in 

segmentation accuracy could be achieved through the use of more advanced segmentation 

models or more comprehensive post-processing algorithms that better balance false positives and 

false negatives. 
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Fig. 3 Comparison of segmentation results of an example image (top) from the MIT model and the OneFormer model. The MIT model 

segmentation (middle) detected a much shortened pole with no connected wires, while the OneFormer model segmentation (bottom) detected the 

accurate pole with connected wires, along with other pole- or wire-like objects 

3.2 Camera Parameter Estimation via Road Alignment Optimization 

We developed an optimization module to estimate unknown camera parameters for each 

videolog image by aligning road edges extracted from airborne LIDAR data with road lane 

markings detected in the images. This optimization process requires a set of initial camera 

parameters to serve as a baseline for minimizing alignment errors. To generate these initial 

parameters, we built a manual registration tool that enables users to calibrate a representative 

image for each unique image resolution. The resulting baseline camera parameters are then 

applied to all images sharing that resolution for optimization by minimizing road alignment 

errors. In the following subsections, we provide a detailed description of the optimization 

approach, including the extraction of road edges from both LiDAR and image data, as well as the 

supporting manual registration process. 

3.2.1 Road Edge Extraction from LiDAR Data 

Each airborne LiDAR point provided by the NCDOT contains the world coordinate, elevation, 

and a classification (e.g., ground, road, building) (Figure 4a). We performed voxel rasterization 

on the raw LiDAR point cloud to reduce the volume of data and create a uniform distribution of 

data points. The world coordinates are divided into a 1 ft. x 1ft. X 1ft. voxel grid, and a data 

point is placed at the grid coordinate of any voxel containing at least one LiDAR point. If any 

points within that voxel are classified as road or bridge, the rasterized point assumes that label to 

prevent gaps in the roadway; otherwise, it is categorized as the most frequently occurring 

classification within that voxel (Figure 4b). To find the roadway edges, we filter the rasterized 

LiDAR data for the “highest hit” (the point with the highest elevation) in each world X-Y 
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coordinate (Figure 4c) and create a 2D overhead image of the highest hit classes (Figure 4d). We 

then convert the classes to a binary image, designating either roadway (1) or other (0), and 

perform binary dilation and erosion to identify the edge pixels. Finally, the coordinates for edge 

pixels in the binary image are converted back to world coordinates. 

 

Fig. 4 LiDAR processing pipeline. a) A 3D visualization of LiDAR world coordinate points for a scene containing a roadside tree. b) The 
scene is rasterized by dividing into a voxel grid and assigning any occupied voxel the most frequently occurring class or roadway, if any 
road points fall within. c) Rasterized points are reduced to the highest occupied voxel for each X-Y coordinate plus any roadway voxels. 
d) A 2D overhead image is created from the reduced, rasterized point cloud, and the roadway edges are identified (dark blue). e) The 
terrain surface is reconstructed using a Delaunay triangulation of the ground and road points for determining visibility through ray 
casting. 

3.2.2 Road Edge Extraction from Videolog Images 

Extracting road edge features from videolog images is a critical first step in our camera 

parameter optimization process, as these features are used to align with LiDAR extracted road 

edges. Through experiments using our manual registration tool, we observed that aligning 

LiDAR road edges with painted lane markings—rather than with road boundaries segmented 

from the images—resulted in more accurate registration. To extract these lane markings from the 

videolog images, we employed the image segmentation model SegFormer [30]. The base model, 

pretrained on the Cityscapes dataset, was equipped with a binary classification head and fine-

tuned using a 10,000-image subset of lane marker labels from the BDD100k dataset [33]. Model 

tuning was performed on a single NVIDIA RTX 3090 GPU for 30 epochs. 

In our alignment process, we filtered out the detected middle lane markings and used only the 

left and right lane markings to correspond to the road edges captured in the LiDAR data. 

Specifically, we removed middle lane markings by estimating a middle lane axis using clustered 

centroids from rows with dense point density, then filtering out points near this axis based on 

their perpendicular distance to the axis. One advantage of using lane markings for alignment is 

their relative robustness to noise. Unlike segmented road boundaries, which can include 

irrelevant features such as parking lots, driveways, or shoulders adjacent to the main road, lane 

markings tend to represent road features for alignment more consistently without including this 
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extraneous noise. However, lane-based alignment may fail to capture intersecting roads if their 

lane markings are missing or poorly detected, as shown in Figure 5. In addition, the lane detector 

often misses distant road segments, which can be particularly important for accurate alignment in 

scenes with curved roads or long stretches of roadway. 

 

Fig. 5 An example image with lane markings segmented by our fine-tuned SegFormer model, overlaid on the original image 

To overcome the limitations of relying solely on lane markings for alignment— particularly in 

complex road environments such as intersections or distant curved road segments—we 

incorporated road boundaries extracted from segmented road pixels using the OneFormer model. 

For instance, in the example shown on the left of Figure 5, an intersecting road on the right 

lacked visible lane markings, causing the lane detection model to miss it entirely. By integrating 

road boundary segmentation with lane detection, we are able to recover such missed segments 

and incorporate them into the alignment process, improving road alignment in challenging road 

scenarios. 

However, this integration can also introduce unwanted artifacts, such as parking lots, driveways, 

and occlusions from road-blocking vehicles. To mitigate these issues, we applied the detected 

left and right lane markings as spatial masks and retained only the road boundary pixels located 

outside the region enclosed by the lanes. As illustrated in Figure 6, this integrated filtering 

approach effectively removed noisy segments—such as occlusions from vehicles—while 

preserving important features like intersecting road boundaries for alignment. Nonetheless, 

unwanted artifacts may still be present in the processed data. As such, the alignment optimization 

algorithm must be robust to occasional segmentation errors or noise introduced through this 

integration process. 
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Fig. 6 Filtered and integrated road edge segmentation result (right) of an example image (left), where the filtered and integrated road edge 

segmentation pixels are shown in light blue, and projected LiDAR road edge pixels are shown in dark blue. 

3.2.3 Manual Registration 

The manual registration step in our pipeline utilizes a standalone interactive tool (Figure 7) that 

we developed to calibrate a representative image for each unique image resolution. The tool is 

browser-based and uses the Three.js library to enable the user to interactively adjust the 

projection—3D position, rotation, and field of view—of input 3D LiDAR points onto a 2D 

image and its resulting road edge segmentation. This calibration process produces a set of initial 

baseline camera parameters, which are then used as the starting point for all images with the 

same resolution. These baseline camera parameters serve as input to the subsequent optimization 

module, which refines the camera parameters by minimizing road alignment errors. 

We also leveraged the manual registration tool to support parameter exploration and to debug the 

automatic registration pipeline. For example, we used it to examine the relationships between 

camera parameters for front-view images and their corresponding left and right side-view 

images. Through the interactive examination, we found that the camera parameters derived from 

aligning projected LiDAR road edges with detected road edges in front-view images were also 

effective for the side-view images. This was evident in the strong visual alignment between 

LiDAR points corresponding to buildings and houses and their counterparts in the side-view 

images. As such, we applied the optimized camera parameters obtained from the front-view 

images to the stitched left+front+right view images, enabling the inclusion of side-view images 

for more accurate object geolocation, as roadside objects of interest frequently appear in side-

view images. 

3.2.4 Road Alignment-Based Optimization 

Our alignment pipeline estimates the camera pose parameters for each image through an 

optimization algorithm that minimizes alignment errors between projected LIDAR road edges 

and the segmented road edges in the videolog images, starting from the baseline parameters 

obtained using the manual registration tool. To achieve this alignment between 2D road edge 

pixels in the image coordinate system and 3D LIDAR road edge vertices, we implemented a 

coordinate transformation pipeline using righthanded coordinate systems consistent with 

OpenGL conventions (https://learnopengl. com/Getting-started/Coordinate-Systems). 

https://learnopengl.com/Getting-started/Coordinate-Systems
https://learnopengl.com/Getting-started/Coordinate-Systems
https://learnopengl.com/Getting-started/Coordinate-Systems
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Fig. 7 Manual registration tool screenshot. 

Specifically, we first transform the LiDAR road edge points from their original geographic 

coordinate reference system (CRS) (NAD83, EPSG:6543) into a right-handed 3D world 

coordinate system centered at the camera. In this world coordinate system, the camera is 

positioned at the origin, the negative z-axis points in the camera’s bearing direction (from the 

current to the next image camera location), the positive y-axis points upward (aligned with the 

LiDAR elevation axis but orthogonalized to be perpendicular to the z-axis), and the positive x-

axis points to the right, perpendicular to both the y- and z-axes. 

Figure 8 shows a diagram of the transformation steps. First, each camera’s location in the LiDAR 

CRS is obtained by transforming its latitude-longitude pair (originally in WGS84 CRS) into X-Y 

coordinates in the LiDAR’s NAD83 CRS, while the camera height (Z) is approximated by 

nearest-neighbor interpolation of surrounding LiDAR points. Using the computed camera 

position and bearing direction, we define the world coordinate frame for each image. Each 

LiDAR road edge point (restricted to the camera’s estimated field of view (FOV) and a distance 

threshold from the camera) is then transformed into this world coordinate frame. These 

transformed LiDAR points are subsequently projected onto the camera’s image plane through a 

perspective projection and finally mapped to pixel coordinates in the 2D screen coordinate 

system for alignment with the segmented road edges. 

We employed the Nelder-Mead simplex optimization algorithm [6] to iteratively minimize a 

grid-based pairwise distance function between the projected LiDAR road edges and the 

segmented road boundaries in the screen coordinate system, estimating the optimal camera 

parameters with minimal alignment error from the initial baseline parameters. The grid-based 

distance function constrains the search space by limiting segmented road boundary pixels to a 

rectangular region centered around each projected LiDAR point pixel, reducing the likelihood of 

mismatches. To further improve alignment accuracy, particularly in complex scenes such as 
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narrow or remote roads, we classified both LiDAR road edge points and segmented road 

boundary pixels into left and right roadside based on the camera’s bearing direction, and 

computed pairwise distances only between point pairs on the same side. In addition, to improve 

robustness against noisy or poor-quality input data, we incorporated empirically derived range 

constraints for each camera pose parameter into the optimizer, preventing the generation of 

unrealistic camera parameters due to erroneous road edge detection inputs. 

 

Fig. 8 Diagram of LiDAR data transformation steps. 

To improve road edge fitting and object geolocation, we integrated a ray casting algorithm to 

remove LiDAR points obscured from the camera by the surrounding terrain. LiDAR points 

labeled as ground or road are selected, and a surface mesh is created using a Delaunay 

triangulation of the point world coordinates (Figure 4e). To determine the visibility of a LiDAR 

point, a vector ray is cast from the camera position to the point. If the ray intersects any surface 

triangle, the point is occluded and removed from the scene. The LiDAR points are organized by 

projected screen coordinates in a quadtree structure, and screen blocks are processed in parallel 

to reduce computational overhead. To further manage computational cost, the occlusion filtering 

was applied once for each image upon the initial scene reconstruction prior to sending the 

LIDAR points to the optimizer for iterative camera parameter refinement. 

3.3 Mapping Input Computation 

Similar to the geolocation pipeline proposed by Krylov et al. [12], our pipeline requires as inputs 

the camera latitude and longitude, as well as the estimated absolute monocular depth and bearing 

for each detected utility pole in an image to perform MRF-based triangulation for object 

geolocation (refer to Figure 3 in [12] for the original triangulation diagram). Since the camera 

latitude and longitude are already available for each image, the following subsections focus on 

our methods for estimating the absolute monocular depth and bearing for detected poles. 

3.3.1 Monocular Depth Estimation and Absolute Metric Mapping 

Krylov et al. [12] employed the FCNN-based depth estimation pipeline introduced by Laina et al. 

[13]. This pipeline is composed of a fully convolutional ResNet-50 backbone [8], followed by a 

cascade of residual up-projection blocks, to generate a dense absolute monocular depth map at 

the native image resolution. However, the download link for this FCNN depth estimation model 

is no longer active, preventing us from directly testing it for absolute metric depth estimation. 

Moreover, most published monocular depth estimation models predict only relative pixel depths 

up to an unknown scale, and converting these relative predictions to absolute metric depths 

typically requires per-image scaling factors derived from ground truth measurements [2]. By 
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“metric depth”, we refer to the true physical distance from the camera to the corresponding point 

in the 3D world for each pixel. 

Since our geolocation algorithm depends on sufficiently accurate estimates of the metric depth 

for each segmented utility pole, the precision of these depth inputs directly affects the 

geolocation outcome. To improve geolocation accuracy, we investigated multiple depth 

prediction models and conducted extensive research into mapping predicted relative monocular 

depths to absolute metric depths. 

First, we evaluated the MiDaS model [21] in combination with the calibration method proposed 

by McCraith et al. [17] to convert relative depth estimates to metric depths. However, our testing 

revealed that the resulting converted metric depths were not sufficiently accurate when compared 

against LiDAR ground truth measurements. More recently, ZoeDepth [2] introduced the first 

monocular depth prediction framework capable of maintaining metric scale across diverse 

domains. We validated the publicly available pre-trained ZoeDepth models against LiDAR 

measurement and found that, while ZoeDepth provided consistent scaling, its predicted depths 

systematically underestimated actual distances. As a result, ZoeDepth’s output was not directly 

applicable to our geolocation pipeline. 

More recently, Yang et al. introduced the Depth-Anything model [31], providing the most 

capable monocular depth estimation framework to date. Their evaluations demonstrated that 

Depth-Anything achieves higher zero-shot relative depth accuracy than MiDaS and higher zero-

shot metric depth accuracy than ZoeDepth. We tested both the relative and metric depth 

prediction capabilities of Depth-Anything on our data, obtaining validation results consistent 

with those reported in [31]. However, our testing showed that even the Depth-Anything metric 

depth predictions tended to systematically underestimate distances relative to our LiDAR ground 

truth. As a result, we adopted Depth-Anything in our pipeline for predicting relative depth maps, 

while developing a custom mapping procedure to convert these predictions into absolute metric 

depths. 

Due to the inherent ambiguity of monocular vision, monocular depth estimation models can 

predict relative depth maps accurately up to an unknown global scaling factor, which is typically 

derived from ground truth measurements such as LiDAR [17, 7]. McCraith et al. [17] proposed a 

monocular depth calibration approach that infers a per-frame depth scaling factor based on 

known camera height and a parametric plane fit to the raw depth map of segmented road pixels. 

Masoumian et al. [16] proposed an alternative approach, modeling the mapping from predicted 

relative depth to absolute metric depth as a quadratic function involving four coefficients, 

including camera height and three others estimated via least-squares optimization. We tested 

both approaches on our dataset, using estimated camera heights. Our analysis revealed that the 

relationship between predicted relative monocular depths and LiDAR-based metric distances is 

neither globally linear nor quadratic across an image. Therefore, applying a single global scaling 

factor per frame was insufficient for our geolocation needs. 

After extensive experimentation, we developed a new mapping algorithm based on the 

perspective projection model. Integrating this algorithm into our geolocation pipeline produced 

sufficiently accurate absolute depth estimation input for the MRF-based geolocation algorithm. 

Specifically, our approach leverages the mathematical relationship between 3D world 
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coordinates and 2D image coordinates in perspective projection. In standard OpenGL-stype 

perspective projection, the z value in the camera coordinate system is normalized to the (−1,1) to 

simulate depth compression, where objects farther from the camera appear smaller. The 

normalized depth d is related to the camera-space depth z through the equation d = c1/(−z) + c2, 

where constants c1 and c2 are derived from the near and far plane distances. Using this mapping, 

we normalized LiDAR point metric depths z (after applying rotation and translation along the 

camera bearing direction) to the (−1,1) range consistent with relative monocular depth prediction 

outputs. Empirically, we observed a strong linear correlation between the predicted monocular 

depths and these normalized LiDAR depths. Thus, we performed a linear regression fit to 

establish a mapping function, and then inverted the mapping equation (z = c1/(c2−d)) to compute 

absolute metric depths z for detected objects from their predicted relative monocular depth d. A 

scatter plot comparing computed absolute depths for a segmented utility pole across six 

consecutive test images against its LiDAR-measured distances is shown in Figure 9. These 

results confirm that our approach achieves sufficiently accurate absolute metric depth estimates 

for geolocating utility poles. 

3.3.2 Bearing Estimation via LiDAR-Image Data Fusion 

To compute the bearing angles for segmented utility poles, we developed a data fusion approach 

that combines LiDAR and image information. First, we rasterized the raw LiDAR point cloud 

into a 1x1 foot grid and projected the resulting dense LiDAR points onto the image plane using 

the estimated camera parameters for each frame. For each segmented utility pole, we identified a 

corresponding LiDAR point located along the approximate line of sight between the camera and 

the pole. Specifically, we selected the LiDAR point whose projected 2D location was closest to 

the bottom of the segmented pole in the image. The bearing between the camera and the 

geographic location of this LiDAR point was then computed and used as the bearing input for the 

geolocation pipeline. 
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Fig. 9 Scatter plot of computed metric depths of a segmented pole in six consecutive test images (red) compared with LiDAR-measured distances 

to the camera along the viewing direction (blue). 

3.4 Object Triangulation and Geolocation 

We adapted the MRF-based object triangulation and optimization approach proposed by Krylov 

et al. [12] to better meet our geolocation requirements. Their MRF-based method leveraged 

recurring stationary objects detected in consecutive frames and performed triangulation based on 

pairwise intersections of view-rays from camera positions. Specifically, the MRF space was 

defined as all pairwise intersections of view-rays, constrained by a 25-meter maximum camera-

to-intersection distance to ensure accurate geolocation near the cameras. Each intersection point 

was assigned a binary label indicating the presence or absence of an object, and the overall MRF 

energy was composed of three terms: a unary term enforcing consistency with depth estimation, 

a pairwise term penalizing segmentation noise and occlusion errors, and a term penalizing view-

rays without positive intersections to resist segmentation false positives or objects discovered 

from a single camera position. The final MRF energy was optimized using a random node-

revisiting schedule until a local minimum was achieved or no further changes were accepted. 

After optimization, hierarchical clustering with a 1-meter maximum intra-cluster distance was 

applied to produce the final geolocated object locations. 

The MRF algorithm requires as inputs the camera geolocations (latitude and longitude) and 

predicted depth and computed bearing for each detected object in a sequence of images. Bearing 

inputs directly affect intersection computation and thus strongly influence geolocation accuracy, 

while depth inputs contribute indirectly through the energy terms, helping validate or reject 

candidate intersections. Through experiments with synthetic datasets containing ground truth 

object locations, we verified that the algorithm is highly sensitive to bearing inputs but relatively 

tolerant of approximate depth inputs. 

However, the original MRF approach incorporated randomness in pairwise intersection node 

selections, leading to slightly different results across repeated runs. In practice, especially when 

input bearings were not sufficiently accurate, random selection of image pairs may cause 
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problems when separate detected poles were incorrectly merged into a single geolocated pole or 

when multiple detections of the same physical pole were not properly merged. Since our 

estimated camera parameters—and thus computed bearings—are approximate, randomness was 

undesirable for our application. 

To address these issues, we made two modifications. First, we removed randomness from the 

MRF iterative optimization and considered all image pair intersections, yielding deterministic 

geolocated outputs independent of multiple runs. Second, to handle cases where multiple 

detections in close proximity corresponded to the same real-world pole, we applied an additional 

clustering rule tailored to our sequential imaging setup. Specifically, two detected poles were 

merged if their intersecting images were captured within 100 feet of each other, the estimated 

depths decreased consistently as the vehicle approached, and the bearings consistently increased 

or decreased. Testing on multiple routes confirmed that this rule successfully clustered multiple 

detections of the same utility pole. 

3.5 Pipeline Component Summary 

To highlight the contributions of each key component in our extended pipeline, we summarize 

their roles and qualitative impacts (Table 1) based on our iterative development evaluations. 

These components were retained only if they proved essential for robust performance, as 

removing them would either break the pipeline or increase geolocation errors in specific 

scenarios. 
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Chapter 4. Results and Discussion 

We tested our geolocation pipeline along a challenging route located in the mountainous western 

region of North Carolina, characterized by frequent elevation changes, sharp turns, occluded road 

lanes, and complex intersections. These complexities made it difficult to accurately segment road 

edge boundaries from images for alignment with LIDAR data and thus presented challenges for 

accurate camera parameter estimation. 

Running our pipeline on this test route resulted in the geolocation of 180 utility poles. Figure 10 

shows these 180 geolocated pole locations on a map of this region. From these 180 geolocated 

pole locations, we randomly sampled 30 for manual validation. ArcGIS Pro version 3.0.0 was 

used as the GIS software within which a 3D ArcGIS Scene was created to interact with the data. 

The latitude and longitude (i.e., X and Y coordinates) information of these geolocated locations 

were the key attributes that were validated manually with ArcGIS Pro. NCDOT provided point 

cloud LiDAR land classification data from the 2016 Geiger mode collection at 30 pulses per 

square meter (ppsm), which was clipped to a 100-foot buffer around the test route. Ortho images 

downloaded from NC One Map were used as a basemap to identify the real-world locations of 

the poles. 

The geospatial validation process involved first creating a LIDAR Aerial Survey (LAS) dataset 

to reference the LiDAR data. A LAS dataset references one or more .las files, a binary format for 

storing LiDAR data. This dataset was projected into the NAD 1983 (2011 StatePlane North 

Carolina FIPS 3200 (US Feet)) as the XY coordinate system and NAVD88 height (ftUS) as the Z 

(height) coordinate system. A CSV file with the coordinates data of the 30 sampled utility pole 

locations was then converted into a GIS shapefile and projected into the same XY coordinate 

system as the LAS dataset. The LiDAR data contained nine land cover classifications; we 

reviewed them to determine which of these classifications provided the best representation of the 

poles by overlaying the LAS dataset with the ortho images in a 2D map linked to the ArcGIS 

Scene. The high vegetation classification provided the best representation of the poles, as it also 

captured wires, with the medium vegetation classification providing additional context at some 

sampled locations. Subsequently, these two classifications were filtered from the LAS dataset 

using the “Make LAS Dataset Layer” geoprocessing tool and displayed separately in the ArcGIS 

Scene. Next, we identified the point of each LiDAR-represented utility pole that was the closest 

to the corresponding geolocated pole location from the sampled pole shapefile (Figure 11). The 

latitude, longitude, and elevation of this LiDAR point were then recorded as the validated 

location corresponding to the geolocated pole location. 
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Fig. 10 A map of the test route with geolocated utility poles indicated as yellow dots. 
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Fig. 11 A LiDAR-represented utility pole (circled in dark blue) with the closest high vegetation point (light blue arrow) to the geolocated pole 

location (circled in red) 

During validation, we encountered an issue stemming from the use of the LIDAR high 

vegetation classification to obtain the surrounding context for each geolocated pole. Specifically, 

a pole clearly visible in both the ArcGIS base map and Google Maps was not captured within the 

LiDAR high vegetation classification near one of the sampled geolocated locations. As a result, 

we excluded this pole from the validation set and present validation results for the remaining 29 

geolocated poles, as shown in Figure 12. 

Validation results indicated that the majority of geolocated poles were accurately positioned 

relative to their validated locations, with 75% of poles located within 8.4 meters. While six 

geolocated poles exhibited relatively large geodesic distances (exceeding 10 meters) from their 

validated locations, overall, the mean geodesic distance was 6.3 meters and the standard 

deviation was 5.7 meters, with distances ranging from 0.64 to 22.9 meters. More importantly, the 

perpendicular offset distance from geolocated poles to the nearest road edge was significantly 

smaller, with 75% of poles located within 2.1 meters and a maximum offset of 7 meters. These 

results are consistent with the characteristics of our geolocation pipeline, confirming that 

predicting distance-to-camera is considerably more challenging than predicting a perpendicular 

offset relative to the road. In addition, the significantly smaller perpendicular offset distance to 

road edges observed in our validation results is preferable and particularly encouraging, as lateral 

positioning relative to the roadway is crucial for determining the likelihood of collision, hence a 

critical factor for road safety and hazard analysis. 
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Fig. 12 Geodesic distances (top) and perpendicular-to-road distance error (bottom) between geolocated and validated pole locations are shown as 

scatter plots (left) and histograms (right). The perpendicular-to-road distance is more useful from the standpoint of potential hazard detection. 

4.1 Threshold-Based Precision, Recall, and F1 Analysis 

To further characterize geolocation performance, we evaluated precision, recall, and F1 score 

across a range of geodesic distance thresholds (Table 2 and Figure 13). True positives (TP) were 

defined as predicted pole locations within the specified geodesic threshold of their validated 

counterparts, false positives (FP) as predicted poles located beyond the threshold, and false 

negatives (FN) as validated poles without a corresponding prediction among the 180 predicted 

locations along the route. The results revealed a stepwise improvement in F1 score, with sharp 

gains at lower thresholds (increasing from 0.35 at 3 meters to 0.72 at 7 meters), followed by 

more modest increases before reaching a plateau of 0.93 at 16 meters. This threshold-dependent 

pattern indicates that, while small thresholds produce limited alignment between geolocated and 

validated locations, modest increases rapidly improve performance. However, beyond 

approximately 16 meters, additional threshold increases provide little further benefit. These 

analyses offer practical guidance for selecting thresholds to achieve reliable geolocation 

performance. 
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Fig. 13 F1 score as a function of geodesic distance threshold. 

4.2 Scenario Classification for Validation Poles 

Building on the threshold-based precision, recall, and F1 analysis, we further evaluated the 

influence of different roadway scenarios on geolocation performance by visually inspecting the 

surroundings of each validation pole (Table 3). We observed that extraneous features such as 

driveways and parking lots were strongly associated with larger geodesic distances, particularly 

for poles with errors greater than 10 meters (e.g., poles 24 and 25, Figure 14). In contrast, 
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roadway geometry—including straight versus curved segments and the presence of 

intersections—did not appear to adversely affect accuracy. On the contrary, intersections and 

curves often provided additional visual landmarks that improved road alignment. Overall, these 

findings indicate that geolocation accuracy is most sensitive to the quality of road alignment 

rather than to roadway geometry, and that misclassification of extraneous features as road edges 

in videolog imagery may degrade alignment and thus increase geolocation error. 

 

 

Fig. 14  

Fig. 14 Representative validation pole alignment examples (poles 24 and 25). Map overlays (left) 

show locations of validated poles (pink squares) and geolocated poles (yellow dots) along with 

camera locations (red dots). LiDAR-image overlays (right) compare projected LiDAR road 
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edges (blue) with segmented image edges (orange). Extraneous features—a parking lot (pole 24) 

and a driveway (pole 25)—pulled the LiDAR curved and intersecting road edges toward non-

road features, resulting in misalignment and larger geolocation errors. 

4.3 Performance Metrics and Trade-off Analysis 

To assess the practical feasibility of our pipeline for large-scale deployment, we report per-mile 

runtime, memory usage, and hardware details across major pipeline stages from our HPC cluster 

run on the test route (approximately 6.3 miles) in Table 4. Stages involving CNN model 

predictions, such as image segmentation and depth estimation, require GPU acceleration for 

reasonable performance, while CPU-based stages, such as LiDAR processing and camera 

parameter estimation via road alignment, support parallel processing that scales with node count. 

This scalability, enabled by the HPC cluster environment, is essential for deploying the pipeline 

across all secondary roads (over 54 thousand miles) in the NCDOT videolog. In addition, we 

analyzed the accuracy/runtime trade-off of increasing levels of image downscaling to compare 

segmentation model performance. Images in the test route were resized such that the image 

height was 256, 512, or 1024 pixels and the aspect ratio remained the same as the original image 

(1200 x 2356 pixels). Due to the cost of resizing the images, downsampling to 1024 pixels did 

not lead to an appreciable improvement in run time compared to the raw images (3.15 min/mile 

vs. 3.36 min/mile, respectively). The 512- and 256-pixel downscaling led to run times of 1.28 

min/mile and 0.71 min/mile, respectively. However, the time savings were offset by reduced 

pole observation, with 29.87% (400/1339) of 256-pixel images showing reduced pole instances 

compared to raw images. 512- and 1024-pixel downscaling returned fewer poles in 12.77% 

(171/1339) and 5.90% (79/1339) of images, respectively. Based on the 50% time reduction over 

raw images and the nearly three-fold decrease in pole reduction compared to the 256-pixel 

images, we selected a 512-pixel image height for our final analysis. A qualitative examination of 

lane line segmentation yielded similar results, so we applied the same resizing for that 

component. Finally, we analyzed the trade-offs in our LiDAR road edge detection method, which 

involves creating a pseudo-image of the route through rasterization of the LiDAR point cloud. 

We examined the effects of increasing voxel size on rasterization time and outputs, using voxel 

sizes of 1, 3, 5, and 10 cubic feet. The point cloud for a 100-foot cross-section of the test route 

contains 34,012,557 coordinates. The run time returns quickly diminish as voxel size increases; 

highest-hit rasterization and edge detection yielded 5,172,679 points (99,361 edge) in 94 sec 

(0.25 min/mile) with 1 ft3 voxels, 589,888 (32,528 edge) in 21 sec (0.06 min/mile) at 3 ft3, 

217,722 (19,466 edge) in 14 sec (0.04 min/mile) at 5 ft3, and 57,748 (9,665 edge) in 11 sec (0.03 

min/mile) at 10 ft3. The decreased point density would lead to better compute efficiency for 

alignment, but voxel sizes above 1 ft3 led to poor surface mesh reconstruction, resulting in large 

swaths of visible points being removed during raycasting analysis. 
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Chapter 5. Conclusions and Future Research 

We have presented an approach for detecting and geolocating recurring stationary roadside 

objects by fusing airborne LiDAR data with videolog images that lack complete camera 

metadata, building upon the pipeline developed by Krylov et al. [12]. Our work contributes a 

practical solution to the often-overlooked challenge of sensor fusion with incomplete metadata 

for roadside asset geolocation and roadway geometry extraction. 

Beyond unknown camera parameters, our pipeline also handles the sparsity of images 

(approximately 26 feet between frames) and a narrow camera field of view (approximately 20 

degrees), both of which complicate reliable triangulation using the MRF-based object 

triangulation approach proposed by Krylov et al. [12]. We found that this triangulation method is 

particularly sensitive to bearing input errors, and as Krylov et al. [12] noted, it should not be 

applied for intersections occurring farther than 25 meters from the cameras. Developing 

geolocation methods that are more robust to bearing inaccuracies remains an important direction 

for future research. In addition, the precision of initial object segmentation strongly constrains 

overall geolocation accuracy in our pipeline. Incorporating data fusion directly into the 

segmentation process could further enhance object detection performance and improve 

geolocation results. 
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Chapter 6. Implementation and Technology Transfer Plan  

Regarding the implementation of the outcomes from this project, we have completed image 

segmentations, image lane segmentations, and depth predictions for all 14 divisions. Currently, 

we are waiting for the LiDAR data transfer from NCDOT to RENCI before we can start to work 

on rasterizing LIDAR data, then run our alignment and geolocation pipeline across all divisions. 

The sheer size of the LIDAR data makes it challenging to transfer LIDAR data for the entire 

state from NCDOT to RENCI. Due to the complexities of acquiring this data, it is difficult to 

provide an exact timeline for the final delivery of geolocated pole locations for all 14 divisions at 

this time. However, we will make every effort to complete the process as soon as possible. 
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